[三角形余弦定理公式]三角形余弦定理

来源:教学设计 时间:2018-07-31 10:00:02 阅读:

【www.bbjkw.net--教学设计】

三角形余弦定理篇(1):余弦定理教学课件

  一、教学设计
  1、教学背景
  在近几年教学实践中我们发现这样的怪现象:绝大多数学生认为数学很重要,但很难;学得很苦、太抽象、太枯燥,要不是升学,我们才不会去理会,况且将来用数学的机会很少;许多学生完全依赖于教师的讲解,不会自学,不敢提问题,也不知如何提问题,这说明了学生一是不会学数学,二是对数学有恐惧感,没有信心,这样的心态怎能对数学有所创新呢?即使有所创新那与学生们所花代价也不成比例,其间扼杀了他们太多的快乐和个性特长。建构主义提倡情境式教学,认为多数学习应与具体情境有关,只有在解决与现实世界相关联的问题中,所建构的知识才将更丰富、更有效和易于迁移。我们在2009级进行了“创设数学情境与提出数学问题”的以学生为主的“生本课堂”教学实验,通过一段时间的教学实验,多数同学已能适应这种学习方式,平时能主动思考,敢于提出自己关心的问题和想法,从过去被动的接受知识逐步过渡到主动探究、索取知识,增强了学习数学的兴趣。
  2、教材分析
  “余弦定理”是高中数学的主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中“勾股定理”内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。本节课是“正弦定理、余弦定理”教学的第二节课,其主要任务是引入并证明余弦定理。布鲁纳指出,学生不是被动的、消极的知识的接受者,而是主动的、积极的知识的探究者。教师的作用是创设学生能够独立探究的情境,引导学生去思考,参与知识获得的过程。因此,做好“余弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力。
  3、设计思路
  建构主义强调,学生并不是空着脑袋走进教室的。在日常生活中,在以往的学习中,他们已经形成了丰富的经验,小到身边的衣食住行,大到宇宙、星体的运行,从自然现象到社会生活,他们几乎都有一些自己的看法。而且,有些问题即使他们还没有接触过,没有现成的经验,但当问题一旦呈现在面前时,他们往往也可以基于相关的经验,依靠他们的认知能力,形成对问题的某种解释。而且,这种解释并不都是胡乱猜测,而是从他们的经验背景出发而推出的合乎逻辑的假设。所以,教学不能无视学生的这些经验,另起炉灶,从外部装进新知识,而是要把学生现有的知识经验作为新知识的生长点,引导学生从原有的知识经验中“生长”出新的知识经验。
  为此我们根据“情境—问题”教学模式,沿着“设置情境—提出问题—解决问题—反思应用”这条主线,把从情境中探索和提出数学问题作为教学的出发点,以“问题”为红线组织教学,形成以提出问题与解决问题相互引发携手并进的“情境—问题”学习链,使学生真正成为提出问题和解决问题的主体,成为知识的“发现者”和“创造者”,使教学过程成为学生主动获取知识、发展能力、体验数学的过程。根据上述精神,做出了如下设计:①创设一个现实问题情境作为提出问题的背景;②启发、引导学生提出自己关心的现实问题,逐步将现实问题转化、抽象成过渡性数学问题,解决问题时需要使用余弦定理,借此引发学生的认知冲突,揭示解斜三角形的必要性,并使学生产生进一步探索解决问题的动机。然后引导学生抓住问题的数学实质,引伸成一般的数学问题:已知三角形的两条边和他们的夹角,求第三边。③为了解决提出的问题,引导学生从原有的知识经验中“生长”出新的知识经验,通过作边BC的垂线得到两个直角三角形,然后利用勾股定理和锐角三角函数得出余弦定理的表达式,进而引导学生进行严格的逻辑证明。证明时,关键在于启发、引导学生明确以下两点:一是证明的起点 ;二是如何将向量关系转化成数量关系。④由学生独立使用已证明的结论去解决中所提出的问题。
  二、教学反思
  本课中,教师立足于所创设的情境,通过学生自主探索、合作交流,亲身经历了提出问题、解决问题、应用反思的过程,学生成为余弦定理的“发现者”和“创造者”,切身感受了创造的苦和乐,知识目标、能力目标、情感目标均得到了较好的落实,为今后的“定理教学”提供了一些有用的借鉴。
  例如,新课的引入,我引导学生从向量的模下手思考:
  生:利用向量的模并借助向量的数量积. .
  教师:正确!由于向量 的模长,夹角已知,只需将向量 用向量 来表示即可.易知 ,接下来只要把这个向量等式数量化即可.如何实现呢?
  学生8:通过向量数量积的运算.
  通过教师的引导,学生不难发现 还可以写成 , 不共线,这是平面向量基本定理的一个运用.因此在一些解三角形问题中,我们还可以利用平面向量基本定理寻找向量等式,再把向量等式化成数量等式,从而解决问题.
  (从学生的“最近发展区”出发,证明方法层层递进,激发学生探求新知的欲望,从而感受成功的喜悦.)
  创设数学情境是“情境·问题·反思·应用”教学的基础环节,教师必须对学生的身心特点、知识水平、教学内容、教学目标等因素进行综合考虑,对可用的情境进行比较,选择具有较好的教育功能的情境。
  从应用需要出发,创设认知冲突型数学情境,是创设情境的常用方法之一。“余弦定理”具有广泛的应用价值,故本课中从应用需要出发创设了教学中所使用的数学情境。
  “情境·问题·反思·应用”教学模式主张以问题为“红线”组织教学活动,以学生作为提出问题的主体,如何引导学生提出问题是教学成败的关键,教学实验表明,学生能否提出数学问题,不仅受其数学基础、生活经历、学习方式等自身因素的影响,还受其所处的环境、教师对提问的态度等外在因素的制约。因此,教师不仅要注重创设适宜的数学情境(不仅具有丰富的内涵,而且还具有“问题”的诱导性、启发性和探索性),而且要真正转变对学生提问的态度,提高引导水平,一方面要鼓励学生大胆地提出问题,另一方面要妥善处理学生提出的问题。关注学生学习的结果,更关注学生学习的过程;关注学生数学学习的水平,更关注学生在数学活动中所表现出来的情感与态度;关注是否给学生创设了一种情境,使学生亲身经历了数学活动过程.把“质疑提问”,培养学生的数学问题意识,提高学生提出数学问题的能力作为教与学活动的起点与归宿。

三角形余弦定理篇(2):关于应用举例的测试题

  一、选择题
  1.飞机沿水平方向飞行,在处测得正前下方地面目标的俯角为,向前飞行米,到达处,此时测得目标的俯角为,这时飞机与地面目标的直线距离为( ).
  A.米 B.米 C.米 D.米
  考查目的:考查正弦定理的应用.
  答案:B.
  解析:如图,在中,根据正弦定理得,解得(米).
  2.某人向正东方向走,然后右转,朝前走,结果他离出发点恰好,则的值为( ).
  A. B. C.或 D.
  考查目的:考查余弦定理、方程思想.
  答案:C.
  解析:根据余弦定理得,化简并整理得,解得或.
  3. (由2010浙江文改编)在中,角所对的边分别为,设为的面积,满足,则角的大小为( ).
  A. B. C.或 D.或
  考查目的:考查余弦定理、三角形面积公式、三角变换等基础知识.
  答案:B
  解析:∵,∴根据余弦定理和三角形面积公式得,∴,.
  二、填空题
  4.(2008江苏卷)在中,若,,则的最大值是 .
  考查目的:考查三角形面积公式、余弦定理以及函数思想.
  答案:.
  解析:设,则,根据面积公式得;根据余弦定理得,∴,
  由三角形三边关系有,解得,故当时,取得最大值.
  5.(2011安徽理)已知的一个内角为,并且三边长构成公差为4的等差数列,则的面积为_______________.
  考查目的:考查余弦定理、等差数列的概念及三角形面积公式.
  答案:.
  解析:根据题意,可设的三边长分别为,由得.由余弦定理得,解得(舍去),∴
  6.如图,某炮兵阵地位于点,两观察所位于两点,已知为正三角形,且,当目标出现在时,测得,则炮兵阵地与目标的距离约为 (精确到).
  考查目的:考查利用正弦定理、余弦定理解决实际问题的能力.
  答案:.
  解析:如图,,在中,由正弦定理得,∴.在中,,由余弦定理得
  三、解答题:
  7.(2007海南、宁夏)如图,测量河对岸的塔高时,可以选与塔底在同一水平面内的两个侧点与.现测得,,并在点测得塔顶的仰角为,求塔高.
  考查目的:考查正弦定理、直角三角形的边角关系以及空间想象能力和运算求解能力.
  答案:.
  解析:在中,.由正弦定理得,∴.在中,.
  8.(2010福建理)某港口要将一件重要物品用小艇送到一艘正在航行的轮船上. 在小艇出发时,轮船位于港口北偏西且与该港口相距海里的处,并以海里/小时的航行速度沿正东方向匀速行驶. 假设该小船沿直线方向以海里/小时的航行速度匀速行驶,经过小时与轮船相遇.
  ⑴若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
  ⑵假设小艇的最高航行速度只能达到海里/小时,试设计航行方案(即确定航行方向与航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.
  考查目的:考查利用直角三角形的边角关系、余弦定理解三角形,以及综合运用知识分析问题解决问题的能力.
  答案:⑴海里/小时,⑵航行方向是北偏东,航行速度为海里/小时.
  解析:(方法一)⑴设相遇时小艇航行的距离为海里,则 ,∴当时,,此时,即小艇以海里/小时的速度航行,相遇时小艇的航行距离最小.
  ⑵设小艇与轮船在处相遇,则,∴. ∵,∴,即,解得.又∵时,,故时,取得最小值,且最小值等于.
  此时,在中,有,故可设计航行方案如下:航行方向是北偏东,航行速度为海里/小时,这样,小艇能以最短时间与轮船相遇.
  (方法二)⑴若相遇时小艇的航行距离最小,又轮船沿正东方向匀速行驶,则小艇航行方向为正北方向,设小艇与轮船在处相遇. 在中,,;又,,此时,轮船航行时间,即小艇以海里/小时的速度航行,相遇时小艇的航行距离最小.
  ⑵猜想时,小艇能以最短时间与轮船在处相遇,此时.又∵,∴,解得.
  据此可设计航行方案如下:航行方向为北偏东,航行速度的大小为海里/小时,这样,小艇能以最短时间与轮船相遇. 证明如下:
  如图,由⑴得,故,且对于线段上任意点,有. 而小艇的最高航行速度只能达到海里/小时,故小艇与轮船不可能在,之间(包含)的任意位置相遇.
  设,则在中,.由于从出发到相遇,轮船与小艇所需要的时间分别为和,∴,由此可得,.又∵,∴,从而,由于时,取得最小值,于是当时,取得最小值,且最小值为,故可设计航行方案如下:航行方向为北偏东,航行速度为海里/小时,小艇能以最短时间与轮船相遇.
  (方法三)⑴同方法一或方法二.
  ⑵设小艇与轮船在处相遇,依题意得,∴.
  (i)若,则由得,,∴.①当时,令,则,,当且仅当即时等号成立.
  ②当时,同理可得. 由①②得,当时,.
  (ii)若,则.
  综合(i)(ii)可知,当时,取最小值,此时,在中,,故可设计航行方案如下:航行方向为北偏东,航行速度为海里/小时,小艇能以最短时间与轮船相遇.

三角形余弦定理篇(3):人教版高中数学必修5教案

  导语:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。下面是小编给大家整理的人教版高中数学必修5教案内容,希望能给你带来帮助!
  (一)课标要求
  本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。通过本章学习,学生应当达到以下学习目标:
  (1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
  (2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。
  (二)编写意图与特色
  1.数学思想方法的重要性
  数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。
  本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。
  教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”设置这些问题,都是为了加强数学思想方法的教学。
  2.注意加强前后知识的联系
  加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。
  本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”这样,从联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构。
  《课程标准》和教科书把“解三角形”这部分内容安排在数学五的第一部分内容,
  位置相对靠后,在此内容之前学生已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,这使这部分内容的处理有了比较多的工具,某些内容可以处理得更加简洁。比如对于余弦定理的证明,常用的方法是借助于三角的方法,需要对于三角形进行讨论,方法不够简洁,教科书则用了向量的方法,发挥了向量方法在解决问题中的威力。
  在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中,提出了一个思考问题“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?”,并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理是勾股定理的推广.”
  3.重视加强意识和数学实践能力
  学数学的最终目的是应用数学,而如今比较突出的两个问题是,学生应用数学的意识不强,创造能力较弱。学生往往不能把实际问题抽象成数学问题,不能把所学的数学知识应用到实际问题中去,对所学数学知识的实际背景了解不多,虽然学生机械地模仿一些常见数学问题解法的能力较强,但当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学思维方法了解不够。针对这些实际情况,本章重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。
  (三)教学内容及课时安排建议
  1.1正弦定理和余弦定理(约3课时)
  1.2应用举例(约4课时)
  1.3实习作业(约1课时)
  (四)评价建议
  1.要在本章的教学中,应该根据教学实际,启发学生不断提出问题,研究问题。在对于正弦定理和余弦定理的证明的探究过程中,应该因势利导,根据具体教学过程中学生思考问题的方向来启发学生得到自己对于定理的证明。如对于正弦定理,可以启发得到有应用向量方法的证明,对于余弦定理则可以启发得到三角方法和解析的方法。在应用两个定理解决有关的解三角形和测量问题的过程中,一个问题也常常有多种不同的解决方案,应该鼓励学生提出自己的解决办法,并对于不同的方法进行必要的分析和比较。对于一些常见的测量问题甚至可以鼓励学生设计应用的程序,得到在实际中可以直接应用的算法。
  2.适当安排一些实习作业,目的是让学生进一步巩固所学的知识,提高学生分析问题的解决实际问题的能力、动手操作的能力以及用数学语言表达实习过程和实习结果能力,增强学生应用数学的意识和数学实践能力。教师要注意对于学生实习作业的指导,包括对于实际测量问题的选择,及时纠正实际操作中的错误,解决测量中出现的一些问题。

本文来源:https://www.bbjkw.net/fanwen169026/

推荐访问:三角形余弦定理公式
扩展阅读文章
热门阅读文章